

DoD M&S Progress Report

23 May 1996

Captain Jim Hollenbach, USN Director, Defense Modeling and Simulation Office

M&S Critical to DoD's Ability to Meet its Mission

Continuing squeeze on DoD resources

- shrinking, dispersed force structure
- competition for O&M funds limits field exercises
- need to carefully examine every investment

More demanding operational requirements

- new, more complex missions
- vastly expanding mission space
- increased complexity of systems and plans
- increasing demand for joint training
- security challenges (e.g., information warfare)
- no traditional way to address

Much more technical capability at less cost

- communications
- computers
- advanced software technology
- displays/human-machine interfaces
- data storage and management

What's Happening

- New simulation programs (JSIMS, JWARS, JTCTS, et. al.) making good progress
- Executive Council for M&S (EXCIMS) established senior level councils for training, analysis, & acquisition
- DoD M&S Master Plan approved (October 1995)
 - Functional Area Appendices in development
- Succession of exercises supported by simulation
 - Atlantic Resolve Kernal Blitz Prairie Warrior
 - ULCHI-Focus Lens United Endeavor Others

What's Happening

continued

- Four DoD M&S Executive Agents appointed
 - DMA terrain Air Force air & space
 - Navy oceans DIA foreign force & Nat'l/Joint intelligence representations
- Budget pressures (e.g., PBD 870)
 - Increasing management attention
 - Must prove return on investment
- DoD M&S Master Plan execution on track, yielding important benefits
- Unprecedented level of cooperation across DoD

DoD M&S Strategy: An Analogy to City Planning

DMSO

Payoffs: Interoperability and reuse = capability and cost-effectiveness

DoD M&S Master Plan

Ob	iective	1

Develop a common technical framework for M&S

Objective 2

Provide timely and authoritative representations of the natural environment

Objective 3

Provide authoritative representations of systems

Objective 4

Provide authoritative representations of human behavior

Objective 5

Establish a M&S infrastructure to meet developer and end-user needs

Objective 6

Share the benefits of M&S

Sub-objectives

Quantify impact

6-2 Education

6-3 Dual-use

Sub-objectives

High-level architecture

1-2 Conceptual models of the mission space

<u>1-3</u> Data standardization

Sub-objectives

<u>2-1</u> Terrain

2-3 Atmosphere

<u>2-4</u> Space

Sub-objectives

Individuals

4-2 Groups and organizations

Sub-objectives

5-1 Field systems

<u>5-2</u> VV&A

5-3 Repositories

<u>5-4</u> Communications

<u>5-5</u> Coordination Center

signed out by USD (A&T) on 17 October 1995

Diverse Simulation Applications under an Overarching Technical Framework

Master Plan's Technical Framework

High Level Architecture, Conceptual Models of the Mission Space, Data Standards

DoD M&S Master Plan Objective 1-1

Objective 1-1

Establish a common high-level simulation architecture to facilitate the interoperability of all types of models and simulations among themselves and with C4I systems, as well as to facilitate the reuse of M&S components

- Simulations developed for particular DoD Components or Functional Areas must conform to the High Level Architecture
- Further definition and detailed implementation of specific simulation system architectures remain the responsibility of the developing Component

C4I-Sim Operational Concept

High-Level Architecture Definition Process

Functional View of the Architecture

HLA Progress to Date

- AMG forum a big success, with superb technical exchange. Eleven meetings thus far.
- Several iterations of HLA documents released, on WWW
- Supporting software efforts on track
 - Runtime Infrastructure (RTI) version 0.3 released
 - Modular Reconfigurable C4I Interface (MRCI) under development
- Prototypes using the HLA are already running on the RTI and DSI.
 First combat interaction of dissimilar simulations on 11 Mar 96
- HLA benefits increasingly understood, further solidifying support and enthusiasm. Commercial products emerging.
- On schedule to establish Baseline HLA definition in Aug 96
- IEEE DIS standards organization is reorganizing to support entire M&S community with DIS++ standards built around HLA

Fostering Cost Effectiveness through Reuse and Direct Support

Key: reusable across all DoD simulation systems reusable across a simulation domain system-specific

HLA Transition

- Establishment of a baseline HLA definition marks the beginning of an important transition process
- As required by the Master Plan, DoD Components and Agencies are responsible for reviewing their programs and planning for transition of new and continuing programs to HLA
- There are a series of activities which are key to this transition process
 - AMG Management of HLA Transition
 - Development of Supporting SW
 - Compliance Certification Process
 - IEEE DIS Standards Transition
 - Technology Experimentation
 - Education and Training

Modular Reconfigurable C4I Interface Notional Design

What is a CMMS?

- A <u>hierarchical</u> description of the actions and interactions among the various entities associated with a particular mission area
- An authoritative first abstraction of the real world
- A <u>common framework</u> for knowledge acquisition
 - Validated, relevant actions and interactions organized by specific task and entity/organization
 - Standard format for expression
- The purpose of CMMS is to cost-effectively provide simulation developers (and others) a common understanding of the real world

CMMS

Simulation Development Process

Real World	CMMS	Front End Analysis	Implementation
Simulation-independent		Simulation-dependent	

Organizational Concept

CMMS Progress

- JSIMS, JWARS, NASM, WARSIM, and others are working together in domain analysis/knowledge acquisition, saving time and effort
- Draft technical structure for CMMS completed
- An automated suite of tools is under development to provide data integration, configuration management, viewing and query capabilities
 - Experimental phase complete demo software available
 - Prototype phase underway 2 spirals completion in Mar 97
 - Full CMMS capability (partially populated) late 97/early 98

Data Standards

Four thrusts

- Identification of authoritative data sources (ADS)
- Establishing standard data interchange formats (DIF)
- Providing VV&A procedures and tools to ensure data quality
- Establishing data security policy

1995 accomplishments

- Nominated 3300 data elements to DoD
- Developed DIS data dictionary
- Developed reverse engineering methodology for migrating legacy databases
- ADS catalog of about 200 data sources accessible through MSRR
- Developing data VV&C guidelines to support data users and suppliers

continued

Data Standards

continued

- FY96 actions
 - Provide existing data standards on MSRR
 - Develop new data interchange formats (DIFs)
 - Focused on discrete tasks (e.g., CMMS, SEDRIS, MRCI, OMT)
 - Continue to populate list of Component-approved ADS
 - Complete development of data VV&C guidelines, then test them with nominated candidate programs before formal coordination
 - Develop a cross-platform Data Quality Engineering tool

What is an Environmental MSEA?

- Authority derived from DoDD 5000.59 to serve the M&S community with specific focus on:
 - Common- and general-use M&S applications to authoritatively represent the natural environment:
 - Foster interoperability and reuse in the generation, interchange, and use of dynamic synthetic environments.
 - Facilitate development of a responsive means to acquire environmental data from a range of data producers and data repositories.
 - Supporting M&S system development and standardization processes as a facilitator in the program start-up phase, a catalyst during development, and a certifier in the capability delivery phase.

MSEA Customers

A broad spectrum, from developers of major M&S training, analysis, and acquisition systems, through simulation and exercise managers at all levels, to the individual user of M&S technology in distributed locations:

- JSIMS, JWARS, WARSIM, BFTT, JTCTS, NASM, NSS, JMASS, other key developing systems
- Legacy systems: Joint Training Confederation models, others
- Weapons/support system simulations/simulators
- Various analytical cells, doctrine development simulation facilities, and engineering centers

Program Areas

- Requirements: Capture M&S data and model requirements and related information through interaction with M&S community:
 - Assist exploitation of data and models in M&S systems.
 - Provide feedback and technical requirements to data and model producers to enhance production base output.
 - Participate in M&S exercises, working groups, and other forums.
- Standards: Promote interoperability, reuse, cost-effectiveness and timely delivery:
 - Define and coordinate standards for algorithms, data and metadata content, and data interchange.
- Technology: Foster development of capabilities to: (1) produce integrated data packages rapidly, efficiently, and economically; (2) depict the data accurately in multidimensional and dynamic representations.
 - Assist in the test and evaluation of prototype products and new applications in operational and developing M&S systems.
 - Use evolving certification and software accreditation procedures.

MSEA Principals

Master Environmental Library

• Objectives:

- Deliver authoritative data in standard formats and models to M&S systems to promote interoperability and reuse.
 - Develop a library architecture for environmental data and models.
 - Establish a standard process for documenting metadata descriptions.
 - Provide data viewer capability.
- Define data quality review processes.

Deliverables:

- Initial MEL capability	Oct 1995
- Implementation of metadata descriptions in SGML	Aug 1996
- Integrated as a domain of MSRR	Dec 1996
- Data consistency review capabilities established	Oct 1997

Rapid Generation Initiatives

 Objective: Sponsor technology initiatives to generate authoritative source data packages for M&S systems and meet 96 hour crisis/mission rehearsal requirements.

Initiatives:

- Feature-integrated Triangulated Irregular Networks (TINs)
- High-resolution database generation in urban environments
- Extraction of elevation & feature data using knowledge-based rules
- Commercial stand-alone data extraction system test
- Integrated database generation for the surf zone
- Fast propagation of electromagnetic energy
- Expanded use of commercial sources and production technology

Commercial End-to-End Production

 Objectives: Test alternative production methods and data sources by evaluating output from commercial producers.

Initiatives:

- DoE Airborne Multisensor Pod System (AMPS): An integrated suite of commercial sensors (3 multi/hyperspectral sensors, Synthetic Aperture Radar (SAR), thermal sensor, and large format frame camera) on one imaging airborne platform.
- Vexcel, Inc: Algorithms/techniques for automated classification and feature identification in rapid mapping using SAR interferometry data.
- Kestrel Corporation: Hyperspectral sensor (airborne, and potentially spaceborne) collection device. The airborne sensor has a high resolution collection capability of less than one meter (at 3,000 feet above ground level).
- Deliverables: Database development area and schedules are in negotiation.

Sharing M&S Databases

★ Every arrow denotes a conversion

SEDRIS

- Objective: Provide a standard interchange through a <u>Synthetic</u> <u>Environment and Data Representation Interchange Specification to promote interoperability and reuse. Specifically SEDRIS will:
 </u>
 - Articulate representation requirements for all environmental attributes (e.g., visual appearance, trafficability, reflectivity, emissivity, etc.)
 - Define data elements and relationships in a data representation model.
 - Support the complete range of interaction among heterogeneous simulations by providing a standard means of interchange as loss-free and complete as possible.

Deliverables:

 Initial data representation model and BAA 	Nov	1995
- Object oriented data representation model defined	Apr	1996
- Initial read & write Application Programmer Interface	. Jan	1997
- Final data representation model	Apr	1997
- SEDRIS format and baseline APIs	Jun	1997

The MSEA process is working...

- Proactive in a customer-oriented approach.
- Executing plans in accordance with a common business model.
- Focused on providing near-term deliverables.
- Addressing the tough problems now and for the future.
- Working together to ensure complete and seamless representations.
- Delivering benefits to simulation developers and users today!

Human Behavior Representations

- A very difficult, but critically important area of modeling
- FY96 strategy is to determine current position, craft a course
 - Convening focused technical workshops to assess current state of the practice in key areas
 - C2 Decision Making in Combat Simulations (Feb 96)
 - Individual Combatant (1-2 Jul 96)
 - Unit Behavioral Representation Workshop (7-8 Aug 96)
 - Sponsoring Computer Generated Forces Workshop (23-25 Jul 96)
 - Publishing a catalog of current HBR technology programs
 - Initiating National Research Council Study/Workshop
- Will craft roadmap, initiate appropriate actions

Modeling and Simulation Resource Repository (MSRR)

- A distributed network of information resources, organized by domains, maintained by owners, and linked via WWW protocols
- Serve data providers and simulation developers, users, and managers
- Resources will include databases, metadata, CMMS, simulation and federation object models, VV&A histories, standards, software, etc.
- Contents registered and configuration managed; search capability
- Schedule
 - ten servers being integrated this year
 - supporting software suite under development by EPG
 - UNCLAS system operating, with basic services, by Dec 96 over Internet
 - prototype classified system in operation by Dec 96, with connectivity via SIPRNET and DSI

MSRR Dec 1996 Snapshot

Verification, Validation, and Accreditation (VV&A)

- DoDI on VV&A policy completed formal coordination on 4
 March 1996 and is being processed for final signature.
- VV&A Technical Support Team completing initial sections of draft DoD Recommended Practices Guide
- VV&A Assessment Team, consisting of 11 programs, will then review/test these recommended practices for refinement before formal publication.

Prototype MSOSA Status

Day 1 (4Dec 95)

313 Requests for M&S Assistance

- 186 Actions
- 111 Cases
- 16 Pending Requests

\$ Estimated Customer Savings To Date: \$1.8M

Community Representation (Requests for Assistance)

Summary

- There is no viable alternative to robust use of M&S in our future
- Charted course is strategically and technically sound
- Unprecedented teamwork and synergy across M&S community
- Major achievements towards interoperable, reusable, affordable M&S